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Background: Although studies suggest that exposure to pollutants is associated with race/ethnicity and
socio-economic status (SES), many studies are limited to the geographic regions where monitoring
stations are located.
Objectives: This study uses modeled predictive surfaces to examine the relationship between air
pollution exposure, race/ethnicity, and measures of SES across the entire State of North Carolina.
Methods: The daily predictions of particulate matter o2.5 mm in aerodynamic diameter (PM2.5) and
ozone (O3) were determined using a spatial model that fused data from two sources: point air
monitoring data and gridded numerical output. These daily predicted pollution levels for 2002 were
linked with Census data. We examine the relationship between the census-tract level predicted
concentration measures, SES, and racial composition.
Results: SES and race/ethnicity were related to predicted concentrations of both PM2.5 and O3 for census
tracts in North Carolina. Lower SES and higher proportion minority population were associated with
higher levels of PM2.5. An interquartile range (IQR) increase of median household income reduced the
predicted average PM2.5 level by 0.10 mg/m3. The opposite relationship was true for O3. An IQR increase of
median household income increased the predicted average O3 measure by 0.11 ppb.
Conclusions: The analyses demonstrate that SES and race/ethnicity are related to predicted estimates of
PM2.5 and O3 for census tracts in North Carolina. These findings offer a baseline for future exposure
modeling work involving SES and air pollution for the entire state and not just among the populations
residing near monitoring networks.

Published by Elsevier Inc.
1. Introduction

The United States Environmental Protection Agency (USEPA)
defines environmental justice (EJ) as the “fair treatment and mean-
ingful involvement of all people regardless of race, color, national
origin, or income with respect to the development, implementation,
and enforcement of environmental laws, regulations, and policies”
(USEPA, 2010). Disadvantaged populations are at increased risk for
diabetes (Karter et al., 2002), cancer, infant mortality, and a myriad of
other diseases (Institute of Medicine, 1999), and an increased burden
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of exposure to environmental stressors may exacerbate health dis-
parities. The Institute of Medicine acknowledges that environmental
risk factors are viewed as an additional health burden to these higher
risk groups (1999). In an attempt to strengthen EJ efforts, the USEPA
recently developed Plan EJ 2014, the USEPA (2011) strategy for
addressing EJ issues and protecting human health and the environ-
ment in overburdened communities.

Over the past 12 years, much of the research surrounding EJ has
hinged on the concern that poor or minority groups may be at
an increased risk from exposure to environmental stressors
(Downey, 2007; NEJAC, 2004; Ringquist, 2005; Stretesky and
Hogan, 1998). A large body of research has shown that disparities
exist in the distribution of exposure to environmental pollutants
and hazards across race and income levels (Kramer et al., 2000;
Mennis and Jordan, 2005; Morello-Frosch et al., 2002; Pastor et al.,
2004; Perlin et al., 1999; Williams and Collins, 2001). When
narrowing the EJ research to air pollutants, studies have been
conducted across the US in Arizona (Grineski et al., 2007),
California (Marshall, 2008) and several states in the Northeastern
U.S. (Brochu et al., 2011; Gwynn and George, 2001; Yanosky et al.,
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2008). Few studies have focused on areas where air pollution
levels are typically below federal standards, such as North
Carolina.

Studies have shown that exposure to air pollution may elevate the
risk of adverse health outcomes, including mortality (Bell et al.,
2004; Dockery et al., 1993; Pope et al., 2002, 2004; Schwartz, 1994),
cardiovascular and respiratory morbidity (Dominici et al., 2006;
Peters et al., 2004; Tonne et al., 2007), and pregnancy outcomes
(Bell et al., 2007; Gray et al., 2010; Pope and Dockery, 2006; Pope
et al., 1995; Schulz et al., 2005). These health effects have been
attributed to both short term and long term exposure to pollutants
such as air borne particulate matter and ozone (Brunekreef and
Holgate, 2002). As detrimental as environmental stressors are to
human health, it is important to note that exposure to air pollution
may not affect all individuals in a population the same way or even
at the same rate (Bell and Dominici, 2008; Brunekreef and Holgate,
2002; Currie et al., 2009; Woodruff et al., 1997). Environmental
pollutants can have a disparate effect among economically disad-
vantaged and minority populations (Sexton et al., 1993), groups that
are also more likely to live in areas with higher levels of pollution,
thus potentially detracting from their health (Gwynn and George,
2001; Perlin et al., 2001; Woodruff et al., 2003; Yanosky et al., 2008).

It is difficult to obtain an exact measure of personal air pollution
exposure for assessing disparities. Health and EJ studies often use
measurements obtained from monitoring stations as surrogates for
individual exposure (Sram et al., 2005). There are many limitations
to using measurements from monitored data. The collected mea-
surements often have missing data as estimates are not always
recorded every day. Additionally, the sparse network of monitoring
stations misses large geographic regions and limits the population
that can be assessed. Alternatively, proximity to major roadways has
also been used as a metric for individual exposures due to the large
contribution of traffic emissions to ambient air pollution (Hart et al.,
2009; Karr et al., 2009; Miranda et al., 2012). Other studies have
explored the use of modeling techniques for estimating exposure
concentration measurements including the Community Multi-Scale
Air Quality Model (CMAQ), the probabilistic NAAQS Exposure Model
(pCNEM) and the stochastic human exposure and dose simulation
(SHEDS-PM) (Berrocal et al., 2010b; Zidek et al., 2003, 2007).

In this study, we explore racial and socioeconomic disparities in
exposure to air pollution across the State of North Carolina. Unlike
previous studies of EJ dimensions of air pollution, which limit
analysis of populations living near air quality monitoring stations,
we use predictive surfaces of ozone (O3) and particulate matter-
o2.5 μm in aerodynamic diameter (PM2.5) at the census-tract
level covering all of North Carolina. This analysis seeks to provide a
better understanding of the EJ dimension of air pollution exposure
across the entire North Carolina population.
2. Methods

2.1. Exposure data

Daily fused predictions surfaces of PM2.5 (daily average in mg/m3) and O3 (daily
8-h maximum in ppb) were obtained from the USEPA for 2002 (www.epa.gov/esd/
land-sci/lcb/lcb_faqsd.html). A Bayesian space-time “downscaling” fusion modeling
approach was used to develop these predictive surfaces (Berrocal et al., 2010a). The
downscaling fusion model uses input data from two sources: point monitoring data
and numerical model gridded output. The air quality monitoring data came from
the Environmental Protection Agency Air Quality System (AQS) repository database,
and the numerical output came from the Models-3/Community Multiscale Air
Quality (CMAQ; http://www.epa.gov/asmdnerl/CMAQ) model run at the 12-km
spatial resolution. An evaluation of the CMAQ model reveals overall agreement
with the AQS network but with biased estimates (Mebust et al., 2003). The fused
model combines the two data sources to attempt to adjust for the existing bias in
the CMAQ model and produces predictions for census tract centroids across the
entire State of North Carolina (Byun and Schere, 2006).
The term “downscaler” is used because adaptive smoothing of the areal CMAQ
output is scaled to the point-level air monitoring data. The downscaler relates
CMAQ output and air quality data using a spatial linear regression with bias
coefficients (additive and multiplicative) that can vary in space and time. This
approach to fusion modeling provides a new answer to the “change-of-support”
problemwhere we would like to predict air pollution at a certain spatial resolution,
but must reconcile the difference between point monitoring data and areal CMAQ
output (Berrocal et al., 2010a, 2012). The fused output has complete spatial
coverage of the study area at the census tract level. Further details and descriptions
of the modeling technique and predictive performance can be found in Berrocal
et al. (2012).

2.2. Demographic data

Measures of racial composition and socio-economic status (SES) for the general
population of North Carolina were obtained from the 2000 US Census at the census
tract level for the 1563 populated census tracts in the state (http://factfinder2.
census.gov). The size of census tracts in North Carolina ranges from 0.4 to
3529.6 km2 with a mean of 87.8 km2 and a standard deviation (SD) of 171.3.
Population density ranged from 2 to 4380 people per sq km with a mean of 442
people per sq km and SD of 550. Fig. 1 shows the 2000 population density for the
State of North Carolina. SES variables obtained from the census included measures
of poverty (percentage of census tract population below the poverty line),
educational attainment (percentage of persons with less than a high school
education) and measures of income (median household income). Racial composi-
tion for each census tracts was based on the
tract percentage of those who self-reported as non-Hispanic black (NHB) and
Hispanic. These variables were chosen based on associations between air pollution,
race/ethnicity, and SES in previous studies (Miranda et al., 2011; Yanosky et al.,
2008).

Table 1 shows the correlations between the SES and race/ethnicity variables. As
expected, tract-level median household income was negatively correlated with
both percent in poverty and percent less than high school education, with r∼−0.7 in
both cases. Percent in poverty was positively correlated with percent less than HS
education and percent NHB, r¼0.61 and 0.64, respectively. Correlations were
significant in all cases (po0.0001). We also included a neighborhood deprivation
index (NDI) as a census level summary for living in a deprived neighborhood. The
NDI was constructed as an aggregated measure of SES for North Carolina following
the methodology described in Messer et al. (2006) and incorporates census SES
variables. Using principal components analysis, the NDI was created as a standar-
dized score having mean 0 and standard deviation of 1.

2.3. Statistical analysis

We examine the association between measures of SES, race/ethnicity, and
average concentrations of O3 and PM2.5 at the census tract level using linear mixed
regression models. We used the predicted PM2.5 and O3 concentrations as our
outcome variables and examined the independent effect of SES, race/ethnicity on the
level of each pollutant. We included a random intercept at the county level to
account for unmeasured variation due to population-level characteristics. The census
variables used in the models included: percent of population below the poverty line
(poverty), median household income, percent of population with less than a high
school (HS) level education, percent NHB, and percent Hispanic. We also included
NDI as an independent covariate. We used the annual average PM2.5 for the year
2002. For O3 we consider both the annual average and also the average during the O3

season for North Carolina, which is from April 1 through September 30. The model
results were equivalent, and we present only those based on the O3 season. All
statistical analyses were performed using SAS 9.3 (SAS Institute, Cary NC).
3. Results

3.1. Race and SES summaries

Fig. 2 shows the spatial distribution of median household
income and the percent in poverty by quintiles for census tracts
in North Carolina. In the maps, darker shades are used to denote
lower SES, for example lower income or higher poverty. In general,
higher SES areas are located in the larger metropolitan regions of
the state, while lower SES levels are clustered around the north-
east and southern tracts of the state, as well as the far western
Appalachian region. It is important to note that the smaller surface
area of the census tracts clustered in metropolitan areas tend to
mask the few tracts with lower SES characteristics. The maps of
percent with less than high school education (not presented here)
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Table 1
Pearson's correlation coefficients between race, ethnicity and SES measures.

Income Poverty Education % NHB % Hispanic NDI

Income 1
Poverty −0.70n 1
Education −0.71n 0.61n 1
% NHB −0.47n 0.64n 0.45n 1
% Hispanic −0.21n 0.22n 0.24n 0.18n 1
NDI −0.80n 0.88n 0.81n 0.72n 0.30n 1

n po0.0001.

Fig. 1. Population density in 2000 for North Carolina.
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revealed similar patterns as the other SES measures. Median
household income ranged from $4545 to $144058, while percent
in poverty and percent with less than high school education rates
ranged from 0.23 to 93.23%, and 0 to 68.57%, respectively.

Fig. 3 shows the spatial distribution of percent NHB and
percent Hispanic by quintiles for census tracts in North Carolina.
In general, we find a cluster of tracts with large NHB populations
in the northeastern part of the state and the smallest proportion
NHB throughout the western mountain region of North Carolina.
Percent Hispanic followed a similar pattern of low percentages
through the mountain region of North Carolina, but was at the
highest levels in the southeastern portion of the state.

3.2. Air pollution summaries

Fig. 4 shows the predicted average PM2.5 and O3 concentration
levels in quintiles by census tract for North Carolina. Values of PM2.5

ranged from 7.9 to 9.3 mg/m3, while O3 predictions ranged between
45.7 and 57.9 ppb. O3 predictions displayed in the figure are the
mean O3 levels during the 2002 O3 season. PM2.5 levels, which are
displayed as the mean PM2.5 levels in 2002, are highest in the more
populated metropolitan areas and lowest along the eastern coast
and in the western mountain region. The highest O3 levels were
seen in central North Carolina and the lowest estimates along the
coast. There was a weak negative correlation between the predicted
averages of PM2.5 and O3, with r ∼−0.09 (po0.001).

3.3. PM2.5. SES, and race/ethnicity

In independent models, predicted tract-level annual average
PM2.5 concentrations were significantly associated with all of the
SES variables (median household income, percent in poverty,
percent less than HS education, and NDI), as well as percent
NHB and percent Hispanic (po .01). All models indicated that
lower SES, higher deprivation, and higher minority characteristics
were consistently associated with slightly higher levels of annual
average PM2.5 (see Table 2). Median household income was
negatively associated with average predicted PM2.5, while percent
in poverty, percent with less than HS education, NDI, percent NHB,
and percent Hispanic had positive associations with PM2.5. Table 2
shows the change in PM2.5 and O3 levels for an interquartile range
(IQR) increase in census tract SES, NDI, and race/ethnicity mea-
sures. An IQR increase of median household income reduced the
predicted average PM2.5 level by 0.10 mg/m3. IQR increases in
percent in poverty, percent less than HS education, percent NHB,
percent Hispanic, and the NDI increased PM2.5 measures by 0.12,
0.14, 0.15, 0.04 and 0.12 mg/m3, respectively.

3.4. O3. SES, and race/ethnicity

As with PM2.5, predicted tract-level average O3 concentrations
during the ozone season were significantly associated in indepen-
dent models with all of the SES variables (median household income,
percent in poverty, percent less than HS education, and NDI), as well
as percent NHB and percent Hispanic (po .01). All models revealed
that lower SES, higher deprivation, and higher minority character-
istics were consistently associated with slightly lower levels of
average O3 (see Table 2). The association between O3 and all demo-
graphic variables were opposite to the findings for PM2.5. Median
household income was positively associated with average predicted
in-season O3, while percent below poverty, percent with less than HS
education, NDI, percent NHB, and percent Hispanic had negative
associations with O3. An IQR increase of median household income
increased the predicted average O3 measure by 0.11 ppb. IQR
increases of percent in poverty, percent less than HS education,
percent NHB, percent Hispanic, and the NDI decreased O3 levels by
0.12, 0.16, 0.15, 0.01 and 0.13 ppb, respectively.

3.5. Discussion

Understanding the relationship between race, ethnicity, and SES
with environmental hazards, such as air pollution, is important for EJ
efforts, as well as epidemiological research. The high correlation
between these variables andmany health outcomes could potentially
confound or modify the results of health effects studies. Attempts to
control for confounding are further limited by obtaining relevant and
complete data for various risk factors. Having to rely on monitoring
networks for air pollution data is a further limitation in EJ and
epidemiological studies. This paper used recently developed air
pollution models from the USEPA that predict PM2.5 and O3 levels
at the census tract level for the entire State of North Carolina to
examine the relationship between air pollution levels and measures
of SES and minority status.

Several studies suggest that minorities and people with lower SES
are exposed to disproportionately high levels of air pollution (Downey,
2003; Finkelstein et al., 2005; Jerrett et al., 2004). Ash and Fetter
(2004) showed that African American and lower income populations



Fig. 3. Distribution of percent NHB and percent Hispanic rates by census tract in North Carolina.

Fig. 2. Distribution of median household income and percent of population below the poverty line by census tract in North Carolina.
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tend to live in more polluted areas in a nationwide US study. Brochu
et al. (2011) also showed that lower SES and African American
populations are exposed to higher ambient particulate matter in the
Northeastern US. While many of these studies differ in spatial scale,
pollutants of interest, geographic location, and methodology imple-
mented, the general findings show that there is a relationship between
community disadvantage and increased levels of air pollution.
This study provides further evidence that disadvantaged com-
munities experience a higher burden of air pollution. In general,
this study showed that SES and race/ethnicity are in fact related to
predicted estimates of both PM2.5 and O3 for census tracts in North
Carolina. Although all associations were significant for both
pollutants, they were not in the same direction. PM2.5 was
consistently and significantly higher in areas with lower SES,



Table 2
Changes in predicted average PM2.5 (mg/m3) and O3 (ppb) concentrations for an IQR
increase in risk factors.

IQR PM2.5 O3

Income $ 13877 −0.10nn 0.11nn

% In poverty 10.49 0.12nn −0.12nn

% Less HS education 17.59 0.14nn −0.16nn

% NHB 29.80 0.15nn −0.15nn

% Hispanic 4.14 0.04n −0.01n

NDI 1.08 0.12nn −0.13nn

n po0.01.
nn po0.001.

Fig. 4. Predicted mean concentrations for: (a) PM2.5 and (b) O3. Standard deviation of predicted concentrations for: (c) PM2.5 and (d) O3.
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higher deprivation, and higher minority rates, while O3 levels were
lower in areas with lower SES, higher deprivation, and higher
minority rates. The magnitude of the effects, while small and in
different directions, was similar and consistent across both pollu-
tants. The largest contributing factors to changes in both PM2.5 and
O3 were percent with less than a high school level education and
percent NHB, while percent Hispanic had the least effect. Our
results showing that lower O3 concentrations are associated with
lower poverty rates are similar to the results of a national study
which restricted to communities with air quality monitors
(Miranda et al., 2011). Marshall (2008) also showed this compar-
able relationship with O3 and lower income populations in
California's South Coast Air Basin. Our results for PM2.5 are similar
in scale to the results reported by Brochu et al. (2011) in their
study on the Northeastern US.

This study was limited by several factors. First, we used data from
the 2000 US Census with 2002 air pollution predictions. Second, we
acknowledge that concentration data is not an explicit measure of
exposure, as it does not take into account daily activity patterns,
occupational exposures, indoor sources of exposure, or ventilation
conditions. Third, measurement error is inherent in the fused model
estimates, with greater uncertainty in the areas furthest away from the
monitoring stations; however, we note that in the Eastern US, the
empirical coverage of the 95% predictive interval for the downscaler
model is 94.9%, showing excellent predictive performance overall
(Berrocal et al., 2012). Additionally, for the census tracts in North
Carolina containing monitoring stations, the overall correlation
between the fused output and the AQS measurements was 0.966
and 0.973 for PM2.5 and O3, respectively (po0.0001 for both). Fourth,
the aggregated group-level associations found in this study are
particular to North Carolina census tracts and cannot necessarily be
translated into individual effects or other locations. Finally, using
census tract data limits our ability to determine whether finer scale
variability of SES and minority status is associated with air pollution.

Despite these limitations, there were several strengths to this
study. We use population level demographic and air pollution data
for the entire State of North Carolina. With data for such a large
geographic region, we have increased statistical power compared to
analyses restricting to populations with available air pollution data
from the monitoring network alone. The fine spatial and temporal
resolution of the air pollution data allowed us to obtain measurements
for times and locations where monitoring data are not available. As
seen in Fig. 4, monitoring stations are sparsely distributed throughout
the state. Placement of monitoring stations tends to be closer to major
cities and roadways and is determined based on regulatory purposes.
Restricting the analysis to only census tracts containing these stations
eliminates 96.8% of the study area. Alternatively, creating buffers of
10 km around a monitoring station covers 41 and 29% of the census
tracts in the entire state for PM2.5 and O3, respectively. Increasing the
buffer size to 20 km increases coverage of the state to 63% for PM2.5

and 60% for O3. While larger buffers around monitoring stations cover
more of the study area's population, the assignment of monitored
value to more distant populations becomes increasingly less reliable as
buffer size increases. Additionally, although previous work has char-
acterized differences in air pollution exposure across sub-populations,
using the fused air pollution predictions rather than monitoring data
alone allowed us to better understand and more deeply explore these
differences by working at the population level rather thanwith a non-
randomly restricted subset of the population.

Several independent measures of SES have been used in previous
studies, including income, employment, education, living conditions,
and crime. It is unclear whether environmental hazards are associated
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with individual or composite measures of SES. We attempt to better
understand this relationship in the case of air pollution exposure by
considering the association between both characterizations of indivi-
dual facets of SES and a characterization that combines individual
facets into a composite measure of SES, the NDI. It is important to note
that the generalized areal measures of SES do not take into account
individual level behavior.

Disproportionate exposure to air pollution and other environmen-
tal risks by race/ethnicity and SES has important implications for
health and EJ. When disadvantaged communities bear an undue
burden of toxic exposures, health disparities already adversely affect-
ing these communities may be exacerbated. This study provides
population-level evidence of disparate exposures to particulate matter
in a state with relatively low levels of air pollution. These findings may
support community advocacy and policy decisions aimed at issues of
EJ. Such disparities are also an important public health concern,
especially as we begin to explore and understand the social context
of environmental exposures and how the two combined may affect
health outcomes. Disparities in air pollution exposure, such as those
highlighted in this paper, are thus important. Future work should
further examine the relationship between SES, race/ethnicity, and air
pollution at the population level in other states, particularly those with
higher pollution levels than North Carolina, where EJ concerns may be
even greater.
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